
Understanding Structural Changes in LMR-
NMC Materials  
 
Project ID: ES194   

Jason R. Croy 
Voltage Fade Team 
 
Annual Merit Review 
Washington DC, June 16-20, 2014 

This presentation does not contain any proprietary, 
confidential, or otherwise restricted information. 



2 

Overview 

Timeline 
• Start: October 1, 2012 
• End:   Sept. 30, 2014 
• Percent complete:  75% 
 
 
Budget 
• Voltage Fade project 

 

Barriers 
Development of a PHEV and EV 
batteries that meet or exceed 
DOE/USABC goals. 
 
Partners 
• ORNL 
• NREL 
• ARL 
• JPL  



Relevance 
• Lithium- and manganese-rich (LMR-NMC) composite cathodes offer  
     considerable gains over current state-of-the-art chemistries. 
• Voltage fade and hysteresis represent significant challenges to the   
     commercialization of these oxides. 
• An atomic level understanding of the 
     mechanisms driving voltage fade and  
     hysteresis is necessary for the design of 
     novel, robust LMR-NMC cathodes. 
      

Material Voltage 
(vs. Li/Li+) 

Capacity 
(mAh/g) 

Sp. En.  
(Wh/Kg) 

LiCoO2 3.8 150 570 
LiNi1/3Mn1/3Co1/3O2  3.7 170 629 
LiNi0.8Co0.15Al0.05O2  3.7 185 685 
LiMn2O4 4.0 110 440 
LiFePO4 3.4 160 544 

Parameters of currently available Li-ion cathodes 

Composite cathode energy densities 
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Approach 

• Take advantage of DOE national user facilities to gain insights into the factors 
     affecting voltage fade and hysteresis. 

 
• Develop an atomic-level model that captures the essential electrochemical  
     observations associated with voltage fade and hysteresis. 
 
• Provide experimental data to the theory component of the voltage fade  
      team to further evaluate the model. 
 
• Provide feedback to the synthesis component of the voltage fade team. 

 
• Design and carry out experiments to validate and refine our understanding 
     of voltage fade and hysteresis. 
 
• Use the understanding/information gained to aid the design of more 
      robust cathode structures. 
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Progress - What We Know About LMR-NMC 

• Local structure is driven by charge ordering giving regions of two types: 
 
      TM-rich (LiMO2) – High M-M coordination giving “standard” electrochemical behavior. 
       
      Mn-rich (Li2MnO3) – Li/Mn rich regions which show strong tendencies for Li-Mn ordering.  
                                           Low Mn-M coordination, electrochemically different than bulk Li2MnO3. 

 
• Activation of the “Li2MnO3 component” (LiMn6-type ordered regions) is necessary  
     to induce voltage fade – concomitant with a structural hysteresis. 
 
• Voltage fade and hysteresis increase with increasing Li and Mn ordering 

 increasing x in xLi2MnO3•(1-x)LiMO2. 
 

• Mn-rich regions undergo more severe structural changes relative to TM-rich  
      regions  Li/Mn ordering plays a key role in VF and hysteresis. 
 
• Hysteresis and voltage fade are correlated and depend on Li utilization, voltage,  
      rate, and temperature (cycling is worse than high voltage ageing). 
 
• A model has been developed to help us understand these observations. 
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Charge Ordering Dictates Composite Nature 

• Mn-M coordination decreases with  increasing x. Local environment  
     tends towards that of pure Li2MnO3

 (no peak at ~4 Å). 

• Changes to local nickel environment are relatively  
     small (peaks at ~4 Å). 

• Charge ordering is a dominating factor dictating local 
      structure. Most Li/Ni exchange associated with MnNi-rich component (Ni-O-Ni). 

Croy et al., JES, 161 A318 (2014) 6 
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Synthesis and Control Over Local Ordering 
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Long et al. submitted 
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Li1.2Mn0.4Co0.4O2 
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• Variations between compositions due to Mn4+/Ni2+  

        interactions and Li+/Ni2+ exchange 

• Li and Mn ordering dominates , Mn-M CN ~4 in  
     both compositions regardless of cooling rates.  
     Related to the low-temp formation of Li2MnO3. 

• Both samples quenched from 850°C 

Croy et al. unpublished 
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Synthesis and Control Over Local Ordering 
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• Mn3+ and extreme damping of EXAFS JT distortions. 
 

• Single O-bond gives Mn-O coordination ~3 (1.9 Å). 
 

• JT distortion gives coordination of ~6 at (1.9/2.3 Å). 
 

• Likely two phases present (Li2MnO3, ??). 

Croy et al. unpublished 
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• No evidence for significant Mn4+ reduction to Mn3+ 
 

• Single O-bond gives Mn-O coordination of  ~6 (1.9 Å) 
     (See ES193, H. Iddir) 

 
• No damping of Mn-M peaks 
 
• Integrated LMO is clearly different than pure LMO 
 

Li2MnO3 Vs. “Li2MnO3 component” (XAS) Croy et al. unpublished 
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• Clear changes observed in the local manganese environment in early cycles. 

 

• Very small changes to the nickel environment. 
 

• Mn-Ni interactions in MnNi-rich regions stabilize Mn on edges of domains. 
 

• Interior of Li/Mn-rich regions are most effected by cycling. 

Li2MnO3 Component Most Effected by Cycling 

Croy et al., JES, 161 A318 (2014) 
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• Charge ordering, especially between Li and Mn, is the dominant factor dictating  
     local, nanocomposite nature of xLi2MnO3•(1-x)LiMO2 oxides. 
 
• Li/Mn rich domains form at low temperatures early in synthesis resulting in two 
      different average environments for Mn relative to other TMs. 
 
• Li/Mn rich domains are locally similar to Li2MnO3 ; however,  the observed  
     electrochemistry is different than pure Li2MnO3. 

 
• Li/Mn ordering plays a critical role in structural changes on cycling. 

Part 1 Summary 
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VF is a Function of x in xLi2MnO3•(1-x)LiMO2 Croy et al., JES, 161 A318 (2014) 
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• Activation and high voltage cycling (~4.4 V) result in low voltage capacity  
     (<3.5 V) due to structural changes – VF configuration. 

• Magnitude of “VF capacity” is proportional to lithium in the transition metal 
     layers of the initial composite – e.g., Li and Mn ordering. 
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Croy et al., JES, 161 A318 (2014) 
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3.0-3.3 V 

• Lithium removed above ~4.0 V cannot be entirely 
     re-accomodated until ~3.2 V on discharge. 
 
• Represents a ~1.0 V hysteresis for some fraction  
     of the overall lithium content. 
 
• Magnitude depends on x in xLi2MnO3•(1-x)LiMO2.   
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• Study the structure and TM oxidation states at equivalent voltages and  
     SOCs on charge and discharge (XAS and XRD) after activation. 
 
• Charge/discharge to each point followed by 12 hour hold or rest. 
 
• Cathodes were prepared and sealed in aluminized Mylar pouches under  
     helium atmosphere for ex-situ XAS and XRD. 
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Croy et al., J. Phys. Chem. C, 6525 (2013) X-ray Studies on Hysteresis in Composites Toda HE5050  
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VF and Hysteresis Are Correlated 

• Cells cycled in truncated windows with 
     decreasing, lower cutoff voltages (x axis). 

 
• Upper cutoff voltage constant at 4.7 V. 

 
• Main graph shows the average fade in   
      discharge OCV between cycles 2 and 23  
     as a function of lower cutoff voltage (-----). 
 
• Inset shows calendar time plot – Fade in 
     OCV as a function of time on test – along  
     with 4 cells held at 4.7 V for several,  
     equivalent times on test (    ).    

• Decreasing the lower cutoff voltage clearly increases voltage fade with a maximum 
     fade found between 3.0 – 3.3 V. 
 
• Cycling between 4.7 – 3.2 V accelerates voltage fade more than any other  
     electrochemical exposure. Same window giving significant hysteresis. 

Toda HE5050  

Gallagher et al., Electrochem. Comm., (2013) 
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Proposed Mechanism of Voltage Fade and Hysteresis 

• VF/hysteresis are related, structure and charge/discharge energetics differ. 
 

• Any model for this class of materials must account for both. 

Our Conceptual Interpretation of VF and Hysteresis 

Gallagher et al., Electrochem. Comm., (2013) 

• Charging to ~3.8 V and above induces migration  
     to tetrahedral sites 

 
• Cations are ‘stuck’ in that site until a critical Li 

content is reached on discharge 
     (~3.2 V) 
 
• At the critical lithium content cations can: 

 
• migrate back to original site (hysteresis) 

 
• continue on to the lithium layer (voltage fade) 

 
• remain ‘stuck’ – capacity loss, impedance rise 
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Why Propose This Model? 
• ‘Dumbbell’ formation (tetrahedral migration)  
      in structural transformations of layered materials. 

Ma et al., JES, 160 , A279 (2013) 

• Now have spectroscopic evidence for 
hysteresis mechanism (B. Key – ES187) 

     (H. Iddir – ES193) 

Observed for other layered systems 

• LiVO2   (Thackeray) 
• LiMnO2 (Ceder, Bruce) 3.2 V processes 
• Li1.2Mn0.4Cr0.4O2 (Balasubramanian) 
• LiMn0.5-xCr2xNi0.5-xO2  (Karan) 

ES187, B. Key 
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EC models agree – See ES189, D. Dees 

Testing Predictions of Proposed Model 
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Proposed Model of LMR-NMC Materials 

• Future studies will be aimed at direct verification, from experiment and  
     theory, of cation occupancies (tetrahedral/octahedral) and oxidation states  
     at different SOCs. 

Gallagher et al., Electrochem. Comm., (2013) 
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Summary 
• Charge ordering drives local “composite” nature of LMR-NMC materials. 

– Activation of the Li2MnO3 component is necessary for both 
 
– Both increase in prominence with increasing x 
 
– Cycling above ~4 V extracts lithium that is not accommodated on 
   discharge until  3.0 – 3.3 V 
 
– Window studies show that a lower cutoff of 3.0 – 3.3 V accelerates  
    Voltage fade faster than any other electrochemical exposure  

• Proposed model involves tetrahedral migration of lithium and TMs on charge 
     creating a barrier to lithium insertion until a sufficient driving force is established 
     at some critical lithium content on discharge (~3.2 V). 
 
• Driving force triggers one of three possibilities: 

1) TM/Li returns to its original octahedral position in the TM layer  Hysteresis 
2) TM/Li migrates to a new octahedral position (e.g. in the Li layer)  Voltage Fade 
3) TM/Li becomes trapped in the tetrahedral site  Loss of capacity, increased impedance 

• Voltage fade and hysteresis are related and depend on x in xLi2MnO3•(1-x)LiMnO2. 
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